Welcome

Click on any integral to navigate to its interactive counterpart.


abxx+c dx=23(x2c)x+c\int_a^b \frac{x}{\sqrt{x+c}}\textnormal{ }dx = \frac{2}{3}(x-2c)\sqrt{x+c}
abxcx dx=x(cx)ctan1(x(cx)xc)\int_a^b \sqrt{\frac{x}{c-x}}\textnormal{ }dx = -\sqrt{x(c-x)}-c\tan^{-1}\biggr(\frac{\sqrt{x(c-x)}}{x-c}\biggr)
abxc+x dx=x(c+x)cln(x+x+c)\int_a^b \sqrt{\frac{x}{c+x}}\textnormal{ }dx = \sqrt{x(c+x)}-c\ln\bigr(\sqrt{x}+\sqrt{x+c}\bigr)
abx2+c2 dx=12xx2+c2+12c2lnx+x2+c2\int_a^b \sqrt{x^2+c^2}\textnormal{ }dx = \frac{1}{2}x\sqrt{x^2 + c^2}+ \frac{1}{2}c^2\ln{\biggr|x+\sqrt{x^2 + c^2}\biggr|}
abc2x2 dx=12xc2x2+12c2tan1(xc2x2)\int_a^b \sqrt{c^2-x^2}\textnormal{ }dx = \frac{1}{2}x\sqrt{c^2-x^2}+ \frac{1}{2}c^2\tan^{-1}\biggr(\frac{x}{\sqrt{c^2-x^2}}\biggr)
ab1x2+c2 dx=lnx+x2+c2\int_a^b \frac{1}{\sqrt{x^2+c^2}}\textnormal{ }dx = \ln{\biggr|x+\sqrt{x^2+c^2}\biggr|}
ab1c2x2 dx=sin1(xc)\int_a^b \frac{1}{\sqrt{c^2-x^2}}\textnormal{ }dx = \sin^{-1}\biggr(\frac{x}{c}\biggr)
abx2x2+c2 dx=12xx2+c212c2lnx+x2+c2\int_a^b \frac{x^2}{\sqrt{x^2+c^2}}\textnormal{ }dx = \frac{1}{2}x\sqrt{x^2+c^2}- \frac{1}{2}c^2\ln{\biggr|x+\sqrt{x^2+c^2}\biggr|}
ab1(c2+x2)3/2 dx=xc2c2+x2\int_a^b \frac{1}{(c^2+x^2)^{3/2}}\textnormal{ }dx = \frac{x}{c^2\sqrt{c^2+x^2}}

absin(cx)dx=1ccos(cx)\int_a^b \sin(cx) dx = -\frac{1}{c}\cos(cx)
absin2(cx)dx=x2sin(2cx)4c\int_a^b \sin^{2}(cx) dx = \frac{x}{2}-\frac{\sin(2cx)}{4c}
absin3(cx)dx=3cos(cx)4ccos(3cx)12c\int_a^b \sin^{3}(cx) dx = \frac{3\cos(cx)}{4c}-\frac{\cos(3cx)}{12c}
abcos(cx)dx=1csin(cx)\int_a^b \cos(cx) dx = \frac{1}{c}\sin(cx)
abcos2(cx)dx=x2+sin(2cx)4c\int_a^b \cos^{2}(cx) dx = \frac{x}{2}+\frac{\sin(2cx)}{4c}
abcos3(cx)dx=3sin(cx)4csin(3cx)12c\int_a^b \cos^{3}(cx) dx = \frac{3\sin(cx)}{4c}-\frac{\sin(3cx)}{12c}
absin(cx)cos(cx)dx=sin2(cx)2c\int_a^b \sin(cx)\cos(cx) dx = \frac{\sin^2(cx)}{2c}
absin(Ax)cos(Bx)dx=cos[(A+B)x]2(A+B)cos[(AB)x]2(AB)\int_a^b \sin(Ax)\cos(Bx) dx = -\frac{\cos[(A+B)x]}{2(A+B)}-\frac{\cos[(A-B)x]}{2(A-B)}
absin2(Ax)cos(Bx)dx=sin[(2AB)x]4(2AB)+sin(Bx)2Bsin[(2A+B)x]4(2A+B)\int_a^b \sin^{2}(Ax)\cos(Bx) dx = -\frac{\sin[(2A-B)x]}{4(2A-B)}+\frac{\sin(Bx)}{2B}-\frac{\sin[(2A+B)x]}{4(2A+B)}
absin(Ax)cos2(Bx)dx=cos[(2AB)x]4(2AB)cos(Bx)2Bcos[(2A+B)x]4(2A+B)\int_a^b \sin(Ax)\cos^{2}(Bx) dx = \frac{\cos[(2A-B)x]}{4(2A-B)}-\frac{\cos(Bx)}{2B}-\frac{\cos[(2A+B)x]}{4(2A+B)}

Please report any errors or post feature requests here, thanks!